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Abstract: The control of liquid level in tanks and flow between tanks is a basic problem in the process 
industries. Almost all theprocesses in the industries are non-linear in nature. Designing a controller for a non-

linear process is an important problem. The problem of level control in interacting tank processes are system 

dynamics and interacting characteristics. In interacting process, dynamics of tank1 affects the dynamics of 
tank2 and vice versabecause flow rate depends on the difference between the liquid levels (h1 and h2). In this 

paper, a real-time two-tank interacting level process is taken-up for study. The mathematical model of a two-

tank interacting process is derived. The hydraulic resistances (R1 and R2) are obtained using Experimental data. 

The servo and regulatory responses are obtained with conventional PI controller. A neural network based direct 
inverse and internal model controllers are designed for a two-tank interacting process and its performance is 

compared with conventional PI controller. To develop model based neuro controllers forward and inverse neuro 

model are developed, trained and validated. Simulation studies are carried out with direct inverse neuro and 
internal model neuro controllers for servo and regulatory problems. It is observed that, direct inverse neuro and 

internal model neuro controllers are giving better results when compared to conventional PI controller. 

Keywords— Two-tank interacting process, PI controller, Non-linear, Inverse control and Internal model 

controller. 
 

1. Introduction 

Level control is very important for the successful operation of most process control, chemical and 

biochemical industries. PI controllers are popular in industrial applications, as they are easy to install and 

resonably robust. In the recent years, there have been significant advances in control system design for non-
linear processes. One such method is the non-linear inverse model based neural control strategy

1
. Neural 

networks (NN) have the potential to approximate any non-linear system including their forward & inverse 

dynamics. The direct inverse NN control strategy utilizes the process inverse model as controller. For training 

the neural network, the process input-output data is generated by applying a uniform random number on a white 
box model of the two-tank interacting process. The BPN Levenberg-Marquardt algorithm is used to train the 

neural networks. 

2. Two-Tank Interacting Process 

Fig.1 shows the photograph of the laboratory level process station. It consists of three pumps, two 

motorized control valves, six process tanks, two overhead tanks, two differential pressure transmitters, five 
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level transmitters and rotameters. Instrumentation panel consists of two PID controllers, main power supply 
switch, pump switches, motorized control valve switches and auxiliary switches for individual component 

Table I.Dimensions and variables for two-tank interacting process. 

 

 

 

 

 

Fluid level in the tank is measured by level transmitter(LT). Output of LT is given to the data 

acquisition setup. It consists of ADC and DAC. The differential pressure level transmitter(DPLT) measures the 

flow by sensing the difference in level between the tank. The DPLT then transmits a current signal(4-20mA) to 

the I/V converter. The output of the I/V converter is given to the interfacing hardware associated with the 
personal computer (PC). A control algorithms are implemented in Lab view software. It compares and takes 

corrective action on the motorized control valve. Based on the valve opening flow rate is manipulated. 

Rotameter can visualize the flow rate. The controller compares the controlled variable against set point and 
generates manipulated variable as current signal(4-20mA). Here the controlled variable is the level(h2) and the 

manipulated variable is the flow rate(qin). The Control valve gives restriction to the flow through the pipeline 

and hence the desired level is achieved. 

 

Fig.1.Piping and Instrumentation diagram of two-tank interacting process. 

3. Mathematical Modelling of A Two-Tank Interacting Level  Process  

Consider the process consisting of two interacting liquid tanks in the Fig.2. The volumetric flow into 

tank1 is qin(cm
3
/min), the volumetric flow rate from tank1 to tank2 is q1(cm

3
/min), and the volumetric flow rate 

from tank2 is qo(cm
3
/min). The height of the liquid level is h1(cm) in tank1 and h2 in tank2(cm). Both tanks 

have the same cross sectional area denotes the area of tank1 is A1(cm
2
) and area of tank2 is A2(cm

2
), qL1 is the 

inflow of tank1 as load disturbance(cm
3
/min)and qL2 is the inflow of tank2 as load disturbance(cm

3
/min)

2
. 

 

Operating 

conditions 

Area 

 (cm
2
) 

Hydraulic 

resistance  

( R1)  
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Fig.2.Two-tank interacting process. 
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For tank 1

 
For tank 2 

 

From the experimental open loop response the hydraulic resistances R1 and R2 values are calculated
3
. The 

hydraulic resistances of tank1 and tank2 for different operating conditions are given in Table II.  

Table II. R1 and R2 values for different operating conditions. 
 

 

 

 

 

 

 

3.1. Simulated Open Loop Responses for Two-Tank Interacting Process 
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Fig.3.Simulated open loop response of h1 and h2 of interacting Process. 

Fig.3 shows the Simulated open loop response of interacting process. The level (h2) changes from 0 to 
4cm, when applying a step input in qin(21.05*16.66cm

3
/min) also the level (h1) changes from 0 to 14.5cm due to 

interaction. The simulated process reaction curve(PRC) of h2 for step change in qin for ±2cm is shown in 
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Fig.4.Simulated PRC of h2 for step change in qin for ± 2cm. 

Parameters Dimensions 
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Area   113.0973cm
2
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2
 

Height   25cm 25cm 
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3
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3
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The transfer functions are obtained and tabulated in Table III. From the average transfer function, the 
controller parameters are obtained using Z-N tuning rule

4
. For two-tank interacting process the PI controller 

parameters are tabulated in Table IV. 

Table III. Transfer function model of two-tank interacting process. 

 

 

 

 

 

Table IV. PI controller settings for two-tank interacting process. 

 

 

4.  Neural Modelling 

Neural network has the capacity to capture the non-linear dynamics and model mismatch of the two-tank 

interacting process. The forward and inverse neuro models are developed using BPN Levenberg-Marquart 
algorithm

5
. 

4.1. Generation of Input-Output Data 

By changing the flow rate as shown in Fig.5 is given to the process and the corresponding output is 

obtained as shown in Fig.6. 
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Fig.5.Random variation of flowrate. 
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 Fig.6.Random variation of level in tank2. 
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4.2  Forward Neural Model  

The network is trained using delayed inputs and delayed outputs. The activation function for the hidden 

layer is tan-sigmoidal, while for the output layer linear function is selected and they are bipolar in nature
6
. The 

procedure for training a forward model consists of placing a NN in parallel with the plant as shown in Fig.7. 

Here the error resulting from the mismatch between plant and model is used to change the weights of the NN 

through an appropriate algorithm
7
. The procedure of training a neural net to represent the forward dynamics of a 

system is referred to as forward modeling and the models obtained from this procedure are called the forward 
models.  

The parameters used for forward modeling: 
input vectors                  :   [qin(k-1) qin(k-2) h2(k-1) h2(k-2)  ] 

Output vector                 :    

Training algorithm         :   BPN Levenberg-Marquardt algorithm 
Activation function        :   Hidden layer- Tan-sigmoid function 

Output layer- pure linear function 

Sampling interval           :   25sec 

 

 

 

Fig.7.Block diagram of forward neuro model of two-tank interacting process. 

4.2.1 Validation of forward model 

 Fig.8 shows the NN forward model for a two-tank interacting process. Forward neuro model is obtained 

by using delayed inputs and delayed outputs. The model output is compared with actual process output. It is 
clear from the Fig.8 that the forward model output exactly matches with the actual process output. The training 

pattern of MSE is shown in Fig.9. 

0 5000 10000 15000
0

2

4

6

8

Time(sec)

 

 

Actual output

NN forward model

 

Fig.8.Comparison of NN forward model with actual output.  
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Fig.9.Variation of MSE for forward neural model during training.  

4.3  Inverse Neural Model 

The inverse neural network is shown in Fig.10. Inverse models are very important since they are part of 

many control structures. The simplest approach is the direct method which is closely related to forward 
modelling. Inverse models are basically the neural net structure representing the inverse of the system dynamics 

at the completion of training. The training procedure in this case is called inverse modelling.The network is 

trained using delayed sample of outputs and delayed inputs
5
. The activation function for hidden layer is Tan-

sigmoidal function and output layer is pure linear function.  

The parameters used for inverse modeling: 

Input vectors                  :   [qin(k-1) qin(k-2) h2(k-1) h2(k-2)] 

Output vector                 :   

Training algorithm         :   BPN Levenberg-Marquardt algorithm 

Activation function        :   Hidden layer-Tan-sigmoid function 
                              Output layer-pure linear function 

Sampling interval           :   25sec 

 

 

Fig.10.Block diagram of inverse neuro model of two-tank interacting process. 
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4.3.1  Training and model validation 
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Fig.11.Comparison of NN inverse model with actual process input. 

          Fig.11 shows the NN inverse model for a two-tank interacting process. Inverse neuro model is obtained 

by using delayed inputs and delayed outputs. The model output is compared with actual process input. It is clear 

from the Fig.11 that the inverse model output exactly matches with the actual process input. The training 
pattern of MSE is shown in Fig.12. 

 

Fig.12.Variation of MSE for inverse neural model during training 

4.4  Design of Direct Inverse Neuro controller 

 

Fig.13.Block diagram of direct inverse neuro control of two-tank interacting process.  
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Direct inverse control is the simplest solution for control that consists of connecting in series the 
inverse model and the plant as can be seen in Fig.13.In the direct inverse control technique, the inverse model 

will act as the controller in cascade with the system under control, without any feedback. In the control scheme 

the desired set-point acts as the desired output which is fed to the network together with the past plant inputs 
and outputs to predict the desired current plant input. In the ideal situation, with no modeling errors and 

disturbances, inverse controller yield perfect control with zero steady state error. It is fail to work for load 

disturbances.  

4.5.  Internal Model Neuro Controller 

 

Fig.14.Block diagram of internal model neuro control of two-tank interacting process.  

       Fig.14 shows the internal model neuro controller for a two-tank interacting process. The internal model 

neuro control approach is similar to the direct inverse control approach except for two additions. First is the 

addition of the forward model placed in parallel with the plant, to cater for plant or model mismatches. Second is 

the error between the plant output and the neural forward model is subtracted from the set-point before being fed 
into the inverse model. The IMC strategy however has a few drawbacks such as not being able to handle 

unstable processes and non-minimum phase systems
1
. A filter can be introduced prior to the controller in this 

approach to incorporate robustness in the feedback system, especially where it is difficult to get exact inverse 
models. Some good feature is compensation for constant disturbances. 

5.  Simulation Results and Discussions 

5.1 Servo Responses of Levels with PI and Neuro Controllers 

Fig.15 shows the set point tracking for level (h2) with PI, direct inverse and internal model neuro 
controllers from 4 to 6cm, 6 to 4cm, 4 to 2cm and 2 to 4cm.The level h1 also increases from 14.5 to 21.8cm, 

21.8 to 14.5cm, 14.5 to 7.3cm and 7.3 to 14.5cm due to interaction as shown in Fig.16. Also corresponding 

controller output qin is shown in Fig.17. It is observed from figures that the PI controller takes more settling time 
for the level (h2) and maximum integral square error. The direct inverse and internal model neuro controllers 

takes less settling time for the level (h2) and thereby producing minimum integral square error. The performance 

measures are tabulated in Table V. 
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Table V.Comparison of performance measures of h2 with PI and Neuro controllers. 
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Fig.15.Servo response of tank2with PI, direct inverse andIMC controllers.     
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Fig.16.Servo response of tank1 with PI, direct inverseand IMCcontrollers.     
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Fig.17.Response of PI, direct inverse and IMCcontrollers output qin for Servoresponse. 
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 Fig.18.Regulatory response of tank2 with direct inverse neuro controller due to load variation in +8% 

from qL2.   

Fig.18 shows the regulatory response of h2 with direct inverse neuro controller due to load variation 

in+8% from qL2. The direct inverse controller is failing to work for load disturbances in the two-tank interacting 

process. 

5.3 Regulatory Response of Levels with PI and IMC Controllers (+8% load disturbance from qL2)  

A sudden load disturbance of +8% is given in inlet flowrate of tank2 at 4000
th
 sample from qL2 as 

shown in Fig.2. Due to this level in h2 increases from 4 to 6cm and controllers takes necessary action to reduce 

the flowrate, i.e from 350.8 to 175.4cm
3
/min(referring Fig.21) thereby decreasing h1 from 14.5 to 

7.25cm(referring Fig.20). The performance measures are tabulated in Table V.  
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Fig.19.Regulatory response of tank2 with PI and IMC controllers due to load variation in +8% from qL2.     
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Fig.20.Regulatory response of tank1 with PI and IMC controllers due to load variation in +8% from qL2.    
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Fig.21.Response of PI and IMC output qin for load variation in +8% from qL2.  

5.4 Regulatory Responses of Levels with PI and IMC Controllers (-8% load disturbance fromqL2)  

     A sudden load disturbance of -8% is given in inlet flowrate of tank2 at 4000
th
 sample from qL2 as 

shown in Fig.2. Due to this level in h2 decreases from 4 to 2cm and controller takes necessary action to increase 
the flowrate, i.e from 350.8 to 526.3cm

3
/min(referring Fig.24)  thereby increasing h1 from 14.5 to 

21.8cm(referring Fig.23). The performance measures are tabulated in Table V.  
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Fig.22.Regulatory response of tank2 with PI and IMC controllers due to load variation in -8% from qL2.     
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Fig.23.Regulatory response of tank1 with PI and IMC controllers due toload variation in-8% from qL2.     
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Fig.24.Response of PI and IMC controlleroutput qin for load variation in -8% from qL2. 
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5.5 Conclusion 

In this work, the conventional PI and neuro controllers are developed for a two-tank interacting process. 

The Neural network based direct inverse and internal model controller are developed for a two-tank interacting 
process using BPN Levenberg-Marquardt learning algorithm.The servo response of two-tank interacting 

process shows that the direct inverse and internal model neuro controller performances are better than PI 

controller.The direct inverse controller is failing to work for load disturbances in the two-tank interacting 
process. The regulatory response of two-tank interacting process shows that the internal model 

controllerperformance is better in terms of less integral square error, faster settling time and better set-point 

tracking when compared with PI controller. 
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